Classification using partial least squares with penalized logistic regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification using partial least squares with penalized logistic regression

MOTIVATION One important aspect of data-mining of microarray data is to discover the molecular variation among cancers. In microarray studies, the number n of samples is relatively small compared to the number p of genes per sample (usually in thousands). It is known that standard statistical methods in classification are efficient (i.e. in the present case, yield successful classifiers) partic...

متن کامل

Nonparametric regression estimation using penalized least squares

We present multivariate penalized least squares regression estimates. We use Vapnik{ Chervonenkis theory and bounds on the covering numbers to analyze convergence of the estimates. We show strong consistency of the truncated versions of the estimates without any conditions on the underlying distribution.

متن کامل

Partial Least Squares Regression (PLS)

Number of latents The same number of factors will be extracted for PLS responses as for PLS factors. The researcher must specify how many latents to extract (in SPSS the default is 5). There is no one criterion for deciding how many latents to employ. Common alternatives are: 1. Cross-validating the model with increasing numbers of factors, then choosing the number with minimum prediction error...

متن کامل

Partial Least Squares (PLS) Regression

Pls regression is a recent technique that generalizes and combines features from principal component analysis and multiple regression. It is particularly useful when we need to predict a set of dependent variables from a (very) large set of independent variables (i.e., predictors). It originated in the social sciences (specifically economy, Herman Wold 1966) but became popular first in chemomet...

متن کامل

PEDOMODELS FITTING WITH FUZZY LEAST SQUARES REGRESSION

Pedomodels have become a popular topic in soil science and environmentalresearch. They are predictive functions of certain soil properties based on other easily orcheaply measured properties. The common method for fitting pedomodels is to use classicalregression analysis, based on the assumptions of data crispness and deterministic relationsamong variables. In modeling natural systems such as s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioinformatics

سال: 2004

ISSN: 1367-4803,1460-2059

DOI: 10.1093/bioinformatics/bti114